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L’Hôpital’s Rule & Indeterminate Forms
In calculus and other branches of mathematical analysis, limits involving an algebraic combination of
functions in an independent variable may often be evaluated by replacing these functions by their limits;
if the expression obtained after this substitution does not provide sufficient information to determine the
original limit, then it is said to assume an indeterminate form. More specifically, an indeterminate form
is a mathematical expression involving 0, 1∞ , obtained by applying the algebraic limit theorem in the
process of attempting to determine a limit, which fails to restrict that limit to one specific value or infinity
(if a limit is confirmed as infinity, then it is not indeterminate since the limit is determined as infinity) and
thus does not yet determine the limit being sought

There are seven indeterminate forms which are typically considered in the literature

• 0
0

• ∞
∞

• 0 ×∞

• ∞×∞

• 00

• 1∞

• ∞0

1 L’Hôpital’s rule
In mathematics, more specifically calculus, L’Hôpital’s rule or L’Hospital’s rule provides a technique to
evaluate limits of indeterminate forms. Application (or repeated application) of the rule often converts an
indeterminate form to an expression that can be easily evaluated by substitution. The rule is named after
the 17th-century French mathematician Guillaume de l’Hôpital. Although the rule is often attributed to
L’Hôpital, the theorem was first introduced to him in 1694 by the Swiss mathematician Johann Bernoulli.

L’Hôpital’s rule states that for functions f and g which are differentiable on an open interval I except
possibly at a point c contained in I,

lim
x→c

f (x) = lim
x→c

g(x) = 0 or ±∞ and g
′

(x) , 0 for all in I with x , c and
f ′(x)
g′(x)

exists, then

The differentiation of the numerator and denominator often simplifies the quotient or converts it to a limit
that can be evaluated directly.

lim
x→c

f (x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.
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2 The Form 0/0
Supppose f (x) and g(x) are functions which can be expanded by Taylors Theorem in the neighbourhood
of x = a, Also let f (a) = 0 and g(a) = 0 Then

lim
x→a

f (x)
g(x)

= lim
x→a

f
′

(x)
g
′
(x)

(1)

as

lim
x→0

sin x − x + x3

6
x5

= lim
x→0

cos x − 1 + x2/2
5x4

= lim
x→0

− sin x + x
20x3

= lim
x→0

− cos x + 1
60x2

= lim
x→0

sin x
120x

= lim
x→0

cos x
120

=
1

120

3 The Form ∞
∞

Suppose limx→a f (x) = ∞ and limx→a g(x) = ∞ then,

lim
x→a

f (x)
g(x)

= lim
x→a

f
′

(x)
g
′
(x)

(2)

as Evaluate

lim
x→0

log x
cotx

= lim
x→0

1/x
−cosec2x

= lim
x→0

− sin2 x
x

= lim
x→0

−2 sin x cos x
1

= lim
x→0

−2 × 0 × 1
1

= 0
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4 The Form∞−∞
This form can be easily reduced to the form 0

0 and ∞
∞

Suppose limx→a f (x) = ∞ and limx→a g(x) = ∞
Then

lim
x→a
{ f (x) − g(x)}

= lim
x→a

{
1

1/ f (x)
−

1
1/g(x)

}

= lim
x→a

1
f (x)
−

1
g(x)

1
f (x)g(x)

As

lim

x→
π

2

(
sec x −

1
1 − sin x

)

lim

x→
π

2

(
1

cos x
−

1
1 − sin x

)

lim

x→
π

2

− cos x + sin x
− sin x + sin x2 − cos2 x

=
−0 + 1
−1 + 1 − 0

= ∞

5 The Form 0 ×∞

This form can be easily reduced to the form
0
0
or to the form

∞

∞
Suppose limx→a f (x) = 0 and limx→a g(x) =

∞

Then limx→a f (x)g(x)

lim
x→a

f (x)

1
g(x)

lim
x→a

g(x)

1
f (x)

We shall reduce the form 0 ×∞ to form
0
0
or
∞

∞
according to our convenience.

As
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lim
x→0

x log sin x

= lim
x→0

log sin x
1
x

= lim
x→0

(1/sin x). cos x

− 1
x2

= lim
x→0

−x2 cos x
sin x

= lim
x→0

x2 sin x − 2x cos x
cos x

= 0
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6 The Forms 1∞, 00, ∞0

Suppose limx→0 f (x)g(x) takes any one of these three forms.
Then let y = limx→0 f (x)g(x).
Taking logarithm of the both sides, We get log y = limx→0 f (x). log g(x)
Now in any of the three cases, log y takes the form 0 × ∞ which can be evaluated by the process of above
section.

lim
x→0
(cos x)cos2 x

log y = lim
x→0
(cot2 x). log cos x

= lim
x→0

log cos x
tan2 x

= lim
x→0

(1/cos x).(− cos x)
2 tan x sec2 x

= lim
x→0

− tan x
2 tan x sec2 x

= lim
x→0

1
−2 sec2 x

= −
1
2

As,

lim
x→∞

(
1 +

a
x

) x

log y = lim
x→∞

{
x log(1 +

a
x
)

}
= lim

x→∞

log(1 +
a

x
)

1
x

= lim
x→∞

a
1 + a

x
= a

Therefore y = ea

5



Ch
and

iga
rh
Un
ive
rsi
ty

7 Algebraic Structure
We first define n − ary operation for n = 1, 2, ... on a set X . Let X be a non-empty set. A mapping

f : Xn → X

is called an n-ary operation for n = 1, 2, 3... on the set X. For n = 1, such an opeation is called a unary
opertaion on X . For n = 2, such an opeation is called a binary opertaion on X .

f : X × X → X

For n = 3, such an opeation is called a Ternary opertaion on X .

f : X × X × X → X

7.1 Algebraic Struture
A non-empty set X together with one or more n− ary operation (n=1,2,...) is called an algebraic structure.

7.2 Binary Operations
Note. In this section, we deal abstractly with operations on pairs (thus the term “binary”) of elements of a
set. You are familiar with this concept in the settings of addition, subtraction, multiplication, and (except
for 0) division of numbers. Two numbers, such as 9 and 3, yield through these four operations, the numbers
12, 6, 27, and 3, respectively. Notice that taking the 9 first and the 3 second affects the result for subtraction
and division. That is, order matters for these operations.

7.2.1 Definition.

A binary operation ? on a set S is a function mapping S × S into S. For each (ordered pair) (a, b) ∈ S × S,
we denote the element ?((a, b)) ∈ S as a? b.

Example

The easiest examples of binary operations are addition and multiplication on R. We could also consider
these operations on different sets, such as Z , Q, or C.
Note. As we’ll see, we don’t normally think of subtraction and division as binary operations, but instead
we think of them in terms of manipulation of inverse elements with respect to addition and multiplication
(respectively).

Example

Amore exotic example of a binary operation is matrix multiplication on the set of all 2×2 matrices. Notice
that “order matters” (and there is, in general, no such thing as “division” here).
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8 Definition: Induced Operation
Let ? be a binary operation on set S and let H ⊂ S. Then H is closed under ? if for all a, b ∈ H, we also
have a?b ∈ H. In this case, the binary operation on H given by restricting? to H is the induced operation
of ? on H.

Example

Let E = {n ∈ Z |nis even} and let O = {n ∈ Z |nis odd}. Then, E is closed under addition (and
multiplication). However, O is NOT closed under addition (but is closed under multiplication).

Example

Consider the set of all 2 × 2 invertible matrices. The set is closed under matrix multiplication (recall
(AB)−1 = B−1 A−1 ), but not closed under matrix addition.

8.1 Defination: Groupoid
if ? is a binary operation on a non-empty set S then the pair (S,?) is called a Groupoid.

Example

(N,+) where N is the set of natural number and + is the operation of addition on N is a groupoid, Note that
(N,-) groupoid.

8.2 Defination: Semigroups
A binary operation ? on a nonempty set S is called semigroup if satisfy following property.

• S is closed with respect to ?. That is x, y ∈ S then x ? y ∈ S

• Associative if (a? b)? c=a? (b? c) ∀ a, b, c ∈ S

Example:

(N,+), (N, .) and (R,+) are all semigroup.

Example:

The Power set P(S) where S is non-empty set together with the operation ∪ of union of two sets is a
semigroup.

8.3 Defination: Commutative
A binary operation ? on a set S is commutative if a? b = b? a for all a, b ∈ S.

Example

Matrix mulitplication on the set of all 2 × 2 matrices is NOT commutative.
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Example

Define ? on Q as a? b = ab + 1. Is ? commutative (prove or find a counterexample)?

8.4 Defination: Associative
A binary operation ? on a set S is associative if (a? b)? c = a? (b? c) for all a, b, c ∈ S.

Example

Define ? on Q as a? b = ab + 1. Is ? associative (prove or find a counterexample)?
Notes We will study several algebraic structures by simply producing the “multiplication table” for the
structure. For example, if S = {a, b, c} and we have:

a? a = b a? b = c a? c = b
b? a = a b? b = c b? c = b
c ? a = c c ? b = b c ? c = a

then we represent this binary operation as:

? a b c
a b c b
b a c b
c c b a

Notice that we read this as (ith entry on left) ? (jth entry on top) = (entry in the ith row and jth column).
Notice a? b = c and b ? a = a, so ? is not commutative.

Notice.: Binary operation? is commutative if and only if table entries of it are symmetric with respect
to the diagonal running from the upper left to the lower right.

Example

Define a ? b = a/b on Z+ = N = {n ∈ Z |n >}. Then N is not closed under ? since, for example, 1 ? 2 =
1/2 < N.

8.5 Defination: Monoids
A semigroup (S,?) with an identity element with respect to the operation ? is called monoid.
In other words, an algebraic system (S,?) is called a monoid if following three conditions are satisfied.

• S is closed with respect to ?. That is x, y ∈ S then x ? y ∈ S

• Associative if (a? b)? c=a? (b? c) ∀ a, b, c ∈ S

• Existence of identity element. That is there exists an element e ∈ S such that e ? x = x ? e = x for
any x ∈ S
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Example:

Consider the power set P(S) of any non-empty set S together with the operation ∪ of union of the two sets.
Then (P(S),∪) is a monoid with empty set φ as identity element.

Example:

Let E = {2, 4, 6, ...} and let + be the operation of addition on E . Then (E,+) is a semigroup but it is not a
monoid because E does not contain the identity element for the operation +.

8.6 Defination:Commutative Monoids
A semigroup (S,?) with an identity element with respect to the operation ? is called monoid.
In other words, an algebraic system (S,?) is called a monoid if following three conditions are satisfied.

• S is closed with respect to ?. That is x, y ∈ S then x ? y ∈ S

• Associative if (a? b)? c=a? (b? c) ∀ a, b, c ∈ S

• Existence of identity element. That is there exists an element e ∈ S such that e ? x = x ? e = x for
any x ∈ S

• Commutative if a? b = b? a ∀ a, b ∈ S

Theorem:

The identity element in any monoid is unique.
Proof: Let (S,?) be any monoid. if possible suppose e and e

′ are two identity element in (S,?). Since e is
an identity element, therefore

e? e
′

= e
′

? e = e
′

(3)

Again, since e
′ is an identity element, therefore

e
′

? e = e? e
′

= e (4)

From (3) and (4) we have
e
′

= e

Thus, the identity element in a monoid is unique.
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HomeWork

1. limx→∞
x

ex

2. limx→∞
ex

x3

3. limx→1
log(1 − x)

cot πx

4. limx→∞
log x

ax , a > 1

5. limx→a
log(x − a)

log(ex − ea)

6. limx→∞
(log x)3

x

7. limx→∞
(x log x)3

1 + x + x2

8. limx→∞ x tan
1
x

9. limx→0
log tan 2x

log tan 3x

10. limx→0 x log x

11. limx→0 sin x log x

12. limx→∞ x(a
1
x − 1)

13. limx→∞ 2x sin
a

2x

Question 14:
On N define? by letting a? b = c where c is the smallest integer greater than both a and b. Is this a binary
operation on N?
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Question 15:
Suppose ? is associative on S. Let

H = {a ∈ S |a? x = x ? a∀x ∈ S}

. Prove that H is closed under ?.
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